1,100 research outputs found

    Positive selection for elevated gene expression noise in yeast

    Get PDF
    It is well known that the expression noise is lessened by natural selection for genes that are important for cell growth or are sensitive to dosage. In theory, expression noise can also be elevated by natural selection when noisy gene expression is advantageous. Here we analyze yeast genome-wide gene expression noise data and show that plasma-membrane transporters show significantly elevated expression noise after controlling all confounding factors. We propose a model that explains why and under what conditions elevated expression noise may be beneficial and subject to positive selection. Our model predicts and the simulation confirms that, under certain conditions, expression noise also increases the evolvability of gene expression by promoting the fixation of favorable expression level-altering mutations. Indeed, yeast genes with higher noise show greater between-strain and between-species divergences in expression, even when all confounding factors are excluded. Together, our theoretical model and empirical results suggest that, for yeast genes such as plasma-membrane transporters, elevated expression noise is advantageous, is subject to positive selection, and is a facilitator of adaptive gene expression evolution

    Large-Scale Selective Sweep among Segregation Distorter Chromosomes in African Populations of Drosophila melanogaster

    Get PDF
    Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (∼2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome

    A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data

    Get PDF
    Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.Peer ReviewedPostprint (published version

    Mapping the Spread of Malaria Drug Resistance

    Get PDF
    Tim Anderson discusses a new study of molecular variation in alleles at the dihydropteroate synthase locus, which underlies resistance to sulfadoxine, in over 5,000 parasites from 50 locations

    SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics.</p> <p>Results</p> <p>We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 × 10<sup>9 </sup>genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested.</p> <p>Conclusion</p> <p>In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, <it>Fst </it>and <it>In</it>.</p

    MalHaploFreq: A computer programme for estimating malaria haplotype frequencies from blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular markers, particularly those associated with drug resistance, are important surveillance tools that can inform policy choice. People infected with <it>falciparum </it>malaria often contain several genetically-distinct clones of the parasite; genotyping the patients' blood reveals whether or not the marker is present (i.e. its prevalence), but does not reveal its frequency. For example a person with four malaria clones may contain both mutant and wildtype forms of a marker but it is not possible to distinguish the relative frequencies of the mutant and wildtypes i.e. 1:3, 2:2 or 3:1.</p> <p>Methods</p> <p>An appropriate method for obtaining frequencies from prevalence data is by Maximum Likelihood analysis. A computer programme has been developed that allows the frequency of markers, and haplotypes defined by up to three codons, to be estimated from blood phenotype data.</p> <p>Results</p> <p>The programme has been fully documented [see Additional File <supplr sid="S1">1</supplr>] and provided with a user-friendly interface suitable for large scale analyses. It returns accurate frequencies and 95% confidence intervals from simulated dataset sets and has been extensively tested on field data sets.</p> <suppl id="S1"> <title> <p>Additional File 1</p> </title> <text> <p>User manual for MalHaploFreq.</p> </text> <file name="1475-2875-7-130-S1.pdf"> <p>Click here for file</p> </file> </suppl> <p>Conclusion</p> <p>The programme is included [see Additional File <supplr sid="S2">2</supplr>] and/or may be freely downloaded from <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. It can then be used to extract molecular marker and haplotype frequencies from their prevalence in human blood samples. This should enhance the use of frequency data to inform antimalarial drug policy choice.</p> <suppl id="S2"> <title> <p>Additional File 2</p> </title> <text> <p>executable programme compiled for use on DOS or windows</p> </text> <file name="1475-2875-7-130-S2.exe"> <p>Click here for file</p> </file> </suppl

    Opsin genes of select treeshrews resolve ancestral character states within Scandentia

    Get PDF
    Treeshrews are small, squirrel-like mammals in the order Scandentia, which is nested together with Primates andDermoptera in the superordinal group Euarchonta. They are often described as living fossils, and researchers havelong turned to treeshrews as a model or ecological analogue for ancestral primates. A comparative study of colourvision-encoding genes within Scandentia found a derived amino acid substitution in the long-wavelength sensitiveopsin gene (OPN1LW) of the Bornean smooth-tailed treeshrew (Dendrogale melanura). The opsin, by inference, isred-shifted by ca. 6 nm with an inferred peak sensitivity of 561 nm. It is tempting to view this trait as a novel visualadaptation; however, the genetic and functional diversity of visual pigments in treeshrews is unresolved outside ofBorneo. Here we report gene sequences from the northern smooth-tailed treeshrew (Dendrogale murina) and theMindanao treeshrew (Tupaia everetti, the senior synonym of Urogale everetti). We found that the opsin genes areunder purifying selection and that D. murina shares the same substitution as its congener, a result that distinguishesDendrogale from other treeshrews, including T. everetti. We discuss the implications of opsin functional variation inlight of limited knowledge about the visual ecology of smooth-tailed treeshrews

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen
    corecore